Objectives

- * Understand the terms population density, birth rate, death rate, and carrying capacity.
- Differentiate between density dependent and density independent environmental factors.
- * Interpret a population graph.
- Predict changes in the environment based on population changes.

Population Density

- * A **Population** is a group of organisms of the same species that shares a habitat.
- * Population density is a measure of how crowded the population is.
- * Population density is calculated by taking the total number of individuals divided by the area or volume of the habitat.\
 - **EXAMPLE:** 30 people per square kilometer.

Dispersion

Dispersion refers to how "spread-out" a population is.

Clumped Dispersion is where the individuals live very closely to one another and much of the habitat is not used.

- Uniform Dispersion is where the individuals are evenly spread throughout the habitat.
- Random Dispersion is where organisms live randomly throughout an environment.

Population Dynamics

- Populations are dynamic meaning that they are constantly changing.
- * To understand how populations change we must understand:
 - Birth Rate: The rate at which new individuals are produced.
 - Death Rate (or Mortality Rate): The rate at which individuals die.
 - Life Expectancy: The amount of time the average individual is expected to live.
 - NOTE: To calculate a rate, it is change divided by time.

So What?

- * Why is it important to study birth rates, death rates, and life expectancies of different species?
 - These things are all determined by environmental factors.
 - A sudden increase or decrease in one of these numbers indicates a drastic change in the environment.
 - An increase in the death rate may mean a decrease in food, increase in predators or introduction of some pollution.
 - An increase in the birth rate may mean a decrease in predators or and abundance of food.

Growth Rate

- *A population's **growth rate** is how much a population is growing over time.
- *There are 4 factors in calculating growth rate:
 - Birth Rate
 - Death Rate
 - Emigration: The movement of individuals OUT of a population.
 - Immigration: The movement of individuals INTO a population.

Graphing Growth, Exponential

- If the birth rate exceeds the death rate then populations will grow.
- * The exponential model indicates a steadily increasing population and when graphed makes a "J-Shaped" curve.

number of rabbits

time

Graphing Growth, Logistic

- * There are some factors that limit exponential growth of populations.
- * Studying population growth while considering the limiting factors is called the logistic model.
- Logistic models produce "S-Shaped" graphs.

Carrying Capacity

- *The limiting factors put a cap on how high the population can grow.
- *The number of individuals that an environment can sustain over a long period of time is called the carrying capacity.
- *The carrying capacity is the point on the graph where the second curve occurs.

Limiting Factors

- * There are two main types of limiting factors that regulate population growth:
 - Density-Independent Factors: These factors affect all populations in an environment equally without concern of population size.
 - EXAMPLES: Weather, flood, fire.
 - Density-Dependent Factors: These factors are determined by the current size of the population.
 - EXAMPLES: Amount of food, amount of water, shelter, number or predators.

So What?

- Density-Independent factors have an equal affect on all populations.
 - A fire will destroy trees and animals alike and it is not affected by the number of organisms that are destroyed.
- Density-dependent factors are controlled by the population itself.
 - The bigger a population gets the less room there is to live, the less food there is for everyone else.
 - Graphs can show how populations are interdependent on each other because as the population of prey goes up, the population of the predator goes up because his food source increases.

Objectives

- Understand the terms population density, birth rate, death rate, and carrying capacity.
- Differentiate between density dependent and density independent environmental factors.
- Interpret a population graph.
- Predict changes in the environment based on population changes.